پاورپوینت کامل و جامع با عنوان سینماتیک نسبیتی در 73 اسلاید
نظریهٔنسبیَت دو نظریه اصلی و معروف نسبیت خاص و نسبیت عام آلبرت اینشتین را در بر میگیرد. ایده اصلی این نظریه آن است که زمان و فضا با هم مرتبط هستند، نه جدا از هم و ثابت.
آغاز به کار بردن عبارت «نظریهٔ نسبیت» به ۱۹۰۶ بر میگردد؛ هنگامی که ماکس پلانک ترکیب «نظریه نسبی» (در آلمانی:Relativtheorie) را به کار برد و بر چگونگی به کار برده شدن اصل نسبیت توسط این نظریه تأکید کرد. اما این آلفرد بوخرر بود که در بخش بحث مقاله پلانک، برای نخستین بار ترکیب «نظریه نسبیت» (در آلمانی: Relativitätstheorie) را به کار برد.
نسبیت خاص
نسبیت خاص نگرهای بر روی ساختار فضازمان است. این نگره در سال ۱۹۰۵ توسط اینشتین و در مقالهای به نام «درباره الکترودینامیک اجسام در حال حرکت» ارایه شد. این نگره بر پایه دو فرضی است که در تناقض با مکانیک کلاسیک هستند:
قوانین فیزیک در دستگاه ناظر کلی (نظارت کیهانی) برای همهٔ اجسام یکسان و واحد است. (اصل نسبیت).
سرعت نور در خلأ برای همه ناظران، صرفنظر از حرکت نسبیشان یا حرکت منبع تولیدکننده نور، ثابت است.
چنین نگرهای همخوانی بهتری با آزمایشهای تجربی نشان میدهد. برای نمونه، آزمایش مایکلسون-مورلی نه تنها فرض دوم را تأیید مینمود که نتایج جالب دیگری را نیز به همراه داشت:
نسبیت همزمانی: دو رویداد که برای یک ناظر همزمان هستند، ممکن است برای ناظر دیگری که نسبت به ناظر نخست در حال حرکت است همزمان نباشند.
اتساع زمانی: ساعتهای در حال حرکت گذر زمان کمتری را نسبت به ساعتهای ساکن تجربه میکنند و نشان میدهند.
انقباض طول: اشیاء متحرک، در جهت حرکتشان از دید یک ناظر ایستا کوتاهتر اندازهگیری میشوند.
همارزی جرم و انرژی: جرم و انرژی با هم همارز هستند و به هم تبدیل میشوند.
نور بیشترین سرعت ممکن را دارد: هیچ جسم مادی یا پیامی نمیتواند با سرعتی بیشتر از سرعت نور در خلاء سفر کند.
جاذبه در فضا با سرعت نور حرکت میکند، نه سریعتر یا بیدرنگ.
ویژگی تعریفکننده نسبیت خاص در جابجایی ترادیسیهای گالیله مورد استفاده در مکانیک کلاسیک با تبدیلات لورنتس است.
نسبیت عام
نسبیت عام، نظریهای هندسی برای گرانش است که در سال ۱۹۱۶ توسط آلبرت اینشتین مطرح گردید و تصویر کنونی فیزیک جدید از گرانش را تشکیل میدهد. نسبیت عام، نظریه نسبیت خاص و قانون جهانی گرانش نیوتن را تعمیم میدهد و توصیفی یکتا از گرانش به عنوان یک ویژگی هندسی فضا و زمان، یا فضازمان ارائه میکند. به خصوص در این نظریه، انحنای فضازمان، بهطور مستقیم بهانرژی و تکانه هر ماده و تابشی که موجود باشد مربوط است. این رابطه توسط معادلات میدان اینشتین مشخص میگردد ٬که یک دستگاه معادلات مشتقات پارهای را تشکیل میدهند.
برخی از پیشبینیهای نظریه نسبیت عام ٬به خصوص موارد مرتبط با گذشت زمان، هندسهٔ فضا٬حرکت اجسام هنگام سقوط آزاد و انتشار نور، با پیشبینیهای نظریههای فیزیک کلاسیک تفاوت بسیاری دارند. برای نمونه از چنین تفاوتهایی، میتوان به اتساع گرانشی زمان، همگرایی گرانشی، انتقال به سرخ گرانشی نور و تاخیر زمانی گرانشی اشاره کرد. پیشبینیهای نظریه نسبیت عام در همه آزمونها تا به امروز تأیید شدهاند. هرچند نسبیت عام تنها نظریه نسبیتی نور نیست، سادهترین نظریهای است که با آزمایشها مطابقت دارد. البته پرسشهای بدون پاسخی باقی ماندهاند، که بنیادیترین آنها چگونگی آشتی دادن نسبیت عام با فیزیک کوانتومی برای ایجاد یک نظریه خود-سازگار و کامل از گرانش کوانتومی میباشد.
نظریه اینشتین نتایج اخترفیزیکی مهمی به دنبال دارد. برای مثال، وجود سیاهچالهها را نشان میدهد (مکانهایی در فضا که در آن فضا و زمان طوری ناهموار شدهاند که هیچ چیز، حتی نور نمیتواند از آن فرار کند)، حالتی که در پایان عمر برای ستارههای پرجرم ایجاد میگردد. شواهد فراوانی وجود دارد که نشان میدهد تابشهای شدید گسیل شده از برخی اجسام نجومی، مربوط به سیاهچالهها است. برای مثال، ریزاختروشها یا هسته کهکشانی فعال نتیجه حضور سیاهچالههای ستارهوار و سیاهچالههایی با جرمهای بسیار بسیار بیشتر هستند. خمشدن نور توسط گرانش میتواند منجر به پدیدهای موسوم به همگرایی گرانشی گردد که موجب دیده شدن چند تصویر از یک شئ نجومی دور، در آسمان میشود. نسبیت عام همچنین وجود امواج گرانشی را پیشبینی میکند. مشاهده و اندازهگیری مستقیم آنها هدف پروژههایی نظیر لیگو، آنتن فضایی تداخلسنج لیزری ناسا/اسا و آرایههای گوناگون زمانسنجی تپاختر است. در ۱۱ فوریه ۲۰۱۶ پژوهشگران در LIGO موفق به مشاهده مستقیم امواج گرانشی برای نخستین بار شدند. همچنین، نسبیت عام اساس مدلهای کنونی کیهانشناختی از یک جهان در حال انبساط است.
فهرست مطالب:
زمان و فاصله مطلق نیستند
ثابت بودن سرعت نور
ثابت بودن سرعت نور با تبدیل گالیله سازگار نیست
چه چیزهایی در چارچوب های مختلف یکسان نیست؟
همزمانی در چارچوب های مختلف
جدایی زمانی
بازه های زمانی: رویدادهای همزمان
روش همزمان کردن ساعت ها
تبدیلات لورنتس
تحت چه تبدیلی معادله موج الکترومغناطیسی ناوردا است؟
پاورپوینت کامل و جامع با عنوان بررسی دینامیک نسبیتی در 41 اسلاید
نظریهٔنسبیَت دو نظریه اصلی و معروف نسبیت خاص و نسبیت عام آلبرت اینشتین را در بر میگیرد. ایده اصلی این نظریه آن است که زمان و فضا با هم مرتبط هستند، نه جدا از هم و ثابت.
آغاز به کار بردن عبارت «نظریهٔ نسبیت» به ۱۹۰۶ بر میگردد؛ هنگامی که ماکس پلانک ترکیب «نظریه نسبی» (در آلمانی:Relativtheorie) را به کار برد و بر چگونگی به کار برده شدن اصل نسبیت توسط این نظریه تأکید کرد. اما این آلفرد بوخرر بود که در بخش بحث مقاله پلانک، برای نخستین بار ترکیب «نظریه نسبیت» (در آلمانی: Relativitätstheorie) را به کار برد.
نسبیت خاص
نسبیت خاص نگرهای بر روی ساختار فضازمان است. این نگره در سال ۱۹۰۵ توسط اینشتین و در مقالهای به نام «درباره الکترودینامیک اجسام در حال حرکت» ارایه شد. این نگره بر پایه دو فرضی است که در تناقض با مکانیک کلاسیک هستند:
قوانین فیزیک در دستگاه ناظر کلی (نظارت کیهانی) برای همهٔ اجسام یکسان و واحد است. (اصل نسبیت).
سرعت نور در خلأ برای همه ناظران، صرفنظر از حرکت نسبیشان یا حرکت منبع تولیدکننده نور، ثابت است.
چنین نگرهای همخوانی بهتری با آزمایشهای تجربی نشان میدهد. برای نمونه، آزمایش مایکلسون-مورلی نه تنها فرض دوم را تأیید مینمود که نتایج جالب دیگری را نیز به همراه داشت:
نسبیت همزمانی: دو رویداد که برای یک ناظر همزمان هستند، ممکن است برای ناظر دیگری که نسبت به ناظر نخست در حال حرکت است همزمان نباشند.
اتساع زمانی: ساعتهای در حال حرکت گذر زمان کمتری را نسبت به ساعتهای ساکن تجربه میکنند و نشان میدهند.
انقباض طول: اشیاء متحرک، در جهت حرکتشان از دید یک ناظر ایستا کوتاهتر اندازهگیری میشوند.
همارزی جرم و انرژی: جرم و انرژی با هم همارز هستند و به هم تبدیل میشوند.
نور بیشترین سرعت ممکن را دارد: هیچ جسم مادی یا پیامی نمیتواند با سرعتی بیشتر از سرعت نور در خلاء سفر کند.
جاذبه در فضا با سرعت نور حرکت میکند، نه سریعتر یا بیدرنگ.
ویژگی تعریفکننده نسبیت خاص در جابجایی ترادیسیهای گالیله مورد استفاده در مکانیک کلاسیک با تبدیلات لورنتس است.
نسبیت عام
نسبیت عام، نظریهای هندسی برای گرانش است که در سال ۱۹۱۶ توسط آلبرت اینشتین مطرح گردید و تصویر کنونی فیزیک جدید از گرانش را تشکیل میدهد. نسبیت عام، نظریه نسبیت خاص و قانون جهانی گرانش نیوتن را تعمیم میدهد و توصیفی یکتا از گرانش به عنوان یک ویژگی هندسی فضا و زمان، یا فضازمان ارائه میکند. به خصوص در این نظریه، انحنای فضازمان، بهطور مستقیم بهانرژی و تکانه هر ماده و تابشی که موجود باشد مربوط است. این رابطه توسط معادلات میدان اینشتین مشخص میگردد ٬که یک دستگاه معادلات مشتقات پارهای را تشکیل میدهند.
برخی از پیشبینیهای نظریه نسبیت عام ٬به خصوص موارد مرتبط با گذشت زمان، هندسهٔ فضا٬حرکت اجسام هنگام سقوط آزاد و انتشار نور، با پیشبینیهای نظریههای فیزیک کلاسیک تفاوت بسیاری دارند. برای نمونه از چنین تفاوتهایی، میتوان به اتساع گرانشی زمان، همگرایی گرانشی، انتقال به سرخ گرانشی نور و تاخیر زمانی گرانشی اشاره کرد. پیشبینیهای نظریه نسبیت عام در همه آزمونها تا به امروز تأیید شدهاند. هرچند نسبیت عام تنها نظریه نسبیتی نور نیست، سادهترین نظریهای است که با آزمایشها مطابقت دارد. البته پرسشهای بدون پاسخی باقی ماندهاند، که بنیادیترین آنها چگونگی آشتی دادن نسبیت عام با فیزیک کوانتومی برای ایجاد یک نظریه خود-سازگار و کامل از گرانش کوانتومی میباشد.
نظریه اینشتین نتایج اخترفیزیکی مهمی به دنبال دارد. برای مثال، وجود سیاهچالهها را نشان میدهد (مکانهایی در فضا که در آن فضا و زمان طوری ناهموار شدهاند که هیچ چیز، حتی نور نمیتواند از آن فرار کند)، حالتی که در پایان عمر برای ستارههای پرجرم ایجاد میگردد. شواهد فراوانی وجود دارد که نشان میدهد تابشهای شدید گسیل شده از برخی اجسام نجومی، مربوط به سیاهچالهها است. برای مثال، ریزاختروشها یا هسته کهکشانی فعال نتیجه حضور سیاهچالههای ستارهوار و سیاهچالههایی با جرمهای بسیار بسیار بیشتر هستند. خمشدن نور توسط گرانش میتواند منجر به پدیدهای موسوم به همگرایی گرانشی گردد که موجب دیده شدن چند تصویر از یک شئ نجومی دور، در آسمان میشود. نسبیت عام همچنین وجود امواج گرانشی را پیشبینی میکند. مشاهده و اندازهگیری مستقیم آنها هدف پروژههایی نظیر لیگو، آنتن فضایی تداخلسنج لیزری ناسا/اسا و آرایههای گوناگون زمانسنجی تپاختر است. در ۱۱ فوریه ۲۰۱۶ پژوهشگران در LIGO موفق به مشاهده مستقیم امواج گرانشی برای نخستین بار شدند. همچنین، نسبیت عام اساس مدلهای کنونی کیهانشناختی از یک جهان در حال انبساط است.
پاورپوینت کامل و جامع با عنوان نسبیت و الکترومغناطیس در 54 اسلاید
نظریهٔنسبیَت دو نظریه اصلی و معروف نسبیت خاص و نسبیت عام آلبرت اینشتین را در بر میگیرد. ایده اصلی این نظریه آن است که زمان و فضا با هم مرتبط هستند، نه جدا از هم و ثابت.
آغاز به کار بردن عبارت «نظریهٔ نسبیت» به ۱۹۰۶ بر میگردد؛ هنگامی که ماکس پلانک ترکیب «نظریه نسبی» (در آلمانی:Relativtheorie) را به کار برد و بر چگونگی به کار برده شدن اصل نسبیت توسط این نظریه تأکید کرد. اما این آلفرد بوخرر بود که در بخش بحث مقاله پلانک، برای نخستین بار ترکیب «نظریه نسبیت» (در آلمانی: Relativitätstheorie) را به کار برد.
نسبیت خاص
نسبیت خاص نگرهای بر روی ساختار فضازمان است. این نگره در سال ۱۹۰۵ توسط اینشتین و در مقالهای به نام «درباره الکترودینامیک اجسام در حال حرکت» ارایه شد. این نگره بر پایه دو فرضی است که در تناقض با مکانیک کلاسیک هستند:
قوانین فیزیک در دستگاه ناظر کلی (نظارت کیهانی) برای همهٔ اجسام یکسان و واحد است. (اصل نسبیت).
سرعت نور در خلأ برای همه ناظران، صرفنظر از حرکت نسبیشان یا حرکت منبع تولیدکننده نور، ثابت است.
چنین نگرهای همخوانی بهتری با آزمایشهای تجربی نشان میدهد. برای نمونه، آزمایش مایکلسون-مورلی نه تنها فرض دوم را تأیید مینمود که نتایج جالب دیگری را نیز به همراه داشت:
نسبیت همزمانی: دو رویداد که برای یک ناظر همزمان هستند، ممکن است برای ناظر دیگری که نسبت به ناظر نخست در حال حرکت است همزمان نباشند.
اتساع زمانی: ساعتهای در حال حرکت گذر زمان کمتری را نسبت به ساعتهای ساکن تجربه میکنند و نشان میدهند.
انقباض طول: اشیاء متحرک، در جهت حرکتشان از دید یک ناظر ایستا کوتاهتر اندازهگیری میشوند.
همارزی جرم و انرژی: جرم و انرژی با هم همارز هستند و به هم تبدیل میشوند.
نور بیشترین سرعت ممکن را دارد: هیچ جسم مادی یا پیامی نمیتواند با سرعتی بیشتر از سرعت نور در خلاء سفر کند.
جاذبه در فضا با سرعت نور حرکت میکند، نه سریعتر یا بیدرنگ.
ویژگی تعریفکننده نسبیت خاص در جابجایی ترادیسیهای گالیله مورد استفاده در مکانیک کلاسیک با تبدیلات لورنتس است.
نسبیت عام
نسبیت عام، نظریهای هندسی برای گرانش است که در سال ۱۹۱۶ توسط آلبرت اینشتین مطرح گردید و تصویر کنونی فیزیک جدید از گرانش را تشکیل میدهد. نسبیت عام، نظریه نسبیت خاص و قانون جهانی گرانش نیوتن را تعمیم میدهد و توصیفی یکتا از گرانش به عنوان یک ویژگی هندسی فضا و زمان، یا فضازمان ارائه میکند. به خصوص در این نظریه، انحنای فضازمان، بهطور مستقیم بهانرژی و تکانه هر ماده و تابشی که موجود باشد مربوط است. این رابطه توسط معادلات میدان اینشتین مشخص میگردد ٬که یک دستگاه معادلات مشتقات پارهای را تشکیل میدهند.
برخی از پیشبینیهای نظریه نسبیت عام ٬به خصوص موارد مرتبط با گذشت زمان، هندسهٔ فضا٬حرکت اجسام هنگام سقوط آزاد و انتشار نور، با پیشبینیهای نظریههای فیزیک کلاسیک تفاوت بسیاری دارند. برای نمونه از چنین تفاوتهایی، میتوان به اتساع گرانشی زمان، همگرایی گرانشی، انتقال به سرخ گرانشی نور و تاخیر زمانی گرانشی اشاره کرد. پیشبینیهای نظریه نسبیت عام در همه آزمونها تا به امروز تأیید شدهاند. هرچند نسبیت عام تنها نظریه نسبیتی نور نیست، سادهترین نظریهای است که با آزمایشها مطابقت دارد. البته پرسشهای بدون پاسخی باقی ماندهاند، که بنیادیترین آنها چگونگی آشتی دادن نسبیت عام با فیزیک کوانتومی برای ایجاد یک نظریه خود-سازگار و کامل از گرانش کوانتومی میباشد.
نظریه اینشتین نتایج اخترفیزیکی مهمی به دنبال دارد. برای مثال، وجود سیاهچالهها را نشان میدهد (مکانهایی در فضا که در آن فضا و زمان طوری ناهموار شدهاند که هیچ چیز، حتی نور نمیتواند از آن فرار کند)، حالتی که در پایان عمر برای ستارههای پرجرم ایجاد میگردد. شواهد فراوانی وجود دارد که نشان میدهد تابشهای شدید گسیل شده از برخی اجسام نجومی، مربوط به سیاهچالهها است. برای مثال، ریزاختروشها یا هسته کهکشانی فعال نتیجه حضور سیاهچالههای ستارهوار و سیاهچالههایی با جرمهای بسیار بسیار بیشتر هستند. خمشدن نور توسط گرانش میتواند منجر به پدیدهای موسوم به همگرایی گرانشی گردد که موجب دیده شدن چند تصویر از یک شئ نجومی دور، در آسمان میشود. نسبیت عام همچنین وجود امواج گرانشی را پیشبینی میکند. مشاهده و اندازهگیری مستقیم آنها هدف پروژههایی نظیر لیگو، آنتن فضایی تداخلسنج لیزری ناسا/اسا و آرایههای گوناگون زمانسنجی تپاختر است. در ۱۱ فوریه ۲۰۱۶ پژوهشگران در LIGO موفق به مشاهده مستقیم امواج گرانشی برای نخستین بار شدند. همچنین، نسبیت عام اساس مدلهای کنونی کیهانشناختی از یک جهان در حال انبساط است.
فهرست مطالب:
نسبیت و الکترومغناطیس
چگونه میدان مغناطیسی صرفا بدلیل حرکت بصورت یک میدان الکتریکی نمود می کند؟
سیم حامل جریان
چگالی نسبیتی شدت جریان
مولفه های چگالی شدت جریان
رابطه چگالی شدت جریان و چگالی بار فضا - زمانی
معادلات تبدیل برای E و B
تبدیلات میدان مغناطیسی
میدان حاصل از یک بار نقطه ای متحرک با حرکت یکنواخت
پاورپوینت کامل و جامع با عنوان نیروی بین نوکلئون ها در 18 اسلاید
در شیمی و فیزیک، یک نوکلئون میتواند یک پروتون، یا یک نوترون باشد که در آن نقش به عنوان یک جزء هستهٔ اتم محسوب میشود. تعدادنوکلئونها در هسته عدد تودهٔ ایزوتوپ (تعداد نوکلئون) را تعیین میکند.
پروتونها و نوترونها اسپین و پاریته ۲/۱ مثبت دارند. تعداد این ذرات هر کدام به ترتیب با نماد Z و N در کنار نام عنصر ذکر میشود که مجموع آنها بهنام عدد جرمی با نماد A مشخص میشود واین ذرات از سه کوارک تشکیل شدهاند و جزو خانوادهٔ فرمیونها هستند.
تا دههٔ ۱۹۶۰، نوکلئونها به عنوان ذرات بنیادی، نه آنکه خود از قطعات کوچکتر تشکیل شدهباشند شناخته میشدند. در حال حاضر آنها ذرات ترکیبی (کامپوزیتی)؛ ساخته شده از سه کوارک با هم متصل که توسط نیروی هستهای قوی با هم متصل هستند، شناخته میشوند. . تعامل بین دو یا چند نوکلئون تعامل بین نوکلئونی یا نیروی هستهای نامیده میشود که در نهایت بوسیلهٔ تعامل قوی ایجاد میشود. (قبل از کشف کوارکها، اصطلاح «تعامل قوی» به تعاملات بین اینترنوکلئونی اشاره دارد).
پاورپوینت کامل و جامع با عنوان بررسی شکافت هسته ای در 126 اسلاید
شکافت هستهای یا فیژن (به انگلیسی: Nuclear fission) فرایندی است که در آن یک اتم سنگین مانند اورانیوم به دو اتم سبکتر تبدیل میشود. وقتی هستهای با عدد اتمی زیاد شکافته شود، بر پایه فرمول انیشتین، مقداری از جرم آن به انرژی تبدیل میشود. از این انرژی در تولید برق (درنیروگاه هستهای) یا تخریب (سلاحهای هستهای) استفاده میشود.
برای ایجاد شکافت هستهای نیاز به بمب باران نوترونی است. یعنی نوترونی را که سرعت آن با سرعت نور برابری میکند توسط آبهای سنگینکاهش سرعت پیدا کنند تا بعد از ناپایدار شدن هسته اتم، اتم تجزیه شود. (در اورانیوم پس از تجزیه عناصر باریم و کریپتون و 2 یا 3 عدد نوترون پس داده میشود)
اوتوهان زمانی که قصد داشت از بمباران اورانیوم با نوترون آن را به رادیم تبدیل کند دریافت که به اتم بسیار کوچکتری دست یافتهاست. در تمامواکنش هستهای که تا ان زمان شناخته شده بود تنها ذرات کوچک از هسته جدا میشدند اما این بار یک تقسیم بزرگ رخ داده بود. لیزه مایتنر و اوتو رابرت فریش دریافتند که فراوردهٔ این بمباران نوترونی باریم است و جرم هر اتم اورانیم هنگام تبدیل شدن به ذرات کوچکتر به اندازهٔ یک پنجم جرم یک پروتون کاهش مییابد و این جرم مطابق رابطهٔ اینشتین E=mc² به انرژی تبدیل شدهاست. به خاطر شباهت این پدیدهٔ تقسیم هسته با تقسیم سلولی مایتنر و فریش آن را شکافت نامیدند. مقالهٔ این یافته در یازدهم فوریهٔ ۱۹۳۹ در نشریهٔ نیچر با عنوان «واکنش هستهای نوع جدید» منتشر شد.
در تصویر اتم اورانیم-۲۳۵ دیده میشود که پس از برخورد یک نوترون به ایزوتوپ اورانیوم-۲۳۶ تبدیل شده و به سرعت متلاشی شده و پرتوهای رادیو اکتیو از خود ساطع میکند. سپس به دو عنصر باریم-۱۴۱ و کریپتون-۹۲ تقسیم شده و به پایداری میرسد و در ضمن ۲/۵ عدد نوترون دیگر آزاد میکند که هر یک موجب شکافت یک هستهٔ اورانیوم دیگر میشوند و این واکنش زنجیرهای مرتب ادامه پیدا میکند.
پاورپوینت کامل و جامع با عنوان اسپین و گشتاور هسته ای در 24 اسلاید
اسپین از خاصیتهای بنیادی ذرات زیراتمی است که معادل کلاسیک ندارد و یک خاصیت کوانتومی بهشمار میآید. نزدیکترین خاصیت کلاسیک به اسپین اندازهحرکت زاویهای است. در مکانیک کوانتوم عملگر اسپین درست از همان قانون جابجایی عملگر اندازهحرکت زاویهای پیروی میکند. از لحاظ ریاضی اسپینهای گوناگون جنبههای نمایشیافته (Representation) مختلف گروه (SU(۲ هستند در حالی که اندازهحرکت زاویهای از جبر لی(SO(۳ پیروی میکند. همانطور که ذرههای بنیادی جرم و بار متفاوت دارند، اسپین متفاوت نیز دارند. اسپین یک ذره میتواند صفر یا هر عدد صحیح ونیمصحیح بزرگتر از صفر باشد، یعنی ۱/۲ یا ۱ یا ۳/۲ و الی آخر. مثلاً اسپین الکترون ۱/۲ و اسپین فوتون ۱ و اسپین گراویتون ۲ است. به ذراتی که اسپین نیمصحیح دارند اصطلاحاً فرمیون و به ذراتی که اسپین صحیح دارند بوزون میگویند. ثابت میشود که فرمیونها و بوزونها از قوانین آماری متفاوتی پیروی میکنند که به اولی آمار فرمی-دیراک و به دومی آمار بوز-اینشتین میگویند.
به عبارت دیگر گشتاور در حرکت چرخشی؛ معادل نیرو در حرکت انتقالی است. به عنوان مثال برای باز کردن درب، نیرویی به دستگیره(بهطور عمود به صفحه درب)به آن وارد میکنیم تا درب حول محور چرخشش(لولا)، بگردد. اگر نیروی وارد شده به لولا نزدیکتر باشد یا زاویهٔ بردار نیرو با صفحهٔ درب کمتر از 90 درجه باشد، باید نیروی بیش تری نسبت به حالت قبل به درب وارد کنیم تا درب به همان صورت قبل بگردد. پس گشتاور نیرو هم با مقدار نیرو و زاویه اعمال آن و هم با فاصلهٔ آن از محور چرخش رابطهٔ مستقیم دارد. گشتاور نیروی وارد بر جسم از رابطه τ=rF بدست میآید که در آن r فاصله نقطه اعمال نیرو تا تکیه گاه (درصورتیکه تکیه گاه موجود نباشد، فاصله نقطه اعمال نیرو تا مرکز جرم جسم را در نظر گیرید) است؛ لذا علاوه بر نیرو، با افزایش فاصله اثر نیرو از تکیه گاه هم میتوان گشتاور وارد بر جسم را تغییر داد.
پاورپوینت کامل و جامع با عنوان امواج در محیط های مرز دار در الکترومغناطیس در 101 اسلاید
تابش الکترومغناطیسی، بر اساس تئوری موجی، پدیدهای موجی شکل است که در فضا انتشار مییابد و از میدانهای الکتریکیو مغناطیسی ساخته شدهاست. این میدانها در حال انتشار بر یکدیگر و بر جهت پیشروی موج عمود هستند.
گاهی به تابش الکترومغناطیسی نور میگویند، ولی باید توجه کرد که نور مرئی فقط بخشی از گسترهٔ امواج الکترومغناطیسی است. امواج الکترومغناطیسی بر حسب بسامدشان به نامهای گوناگونی خوانده میشوند: امواج رادیویی، ریزموج، فروسرخ (مادون قرمز)، نور مرئی، فرابنفش، پرتو ایکس و پرتو گاما. این نامها به ترتیب افزایش بسامد مرتب شدهاند. تغییر در اندازه و موقعیّت بار الکتریکی تواماً باعث انتشار موج الکترو مغناطیسی می شود. رابطهء دامنهء موج الکتریکی (E)دامنهء موج مغناطسیس(B)به صورتE=CBاست که درآن Cسرعت نور در خلاء۳×۱۰^۸ است.
امواج الکترومغناطیسی را نخستین بار ماکسول پیشبینی کرد و سپس هاینریش هرتز آن را با آزمایش به اثبات رساند. ماکسول پس از تکمیل نظریهٔ الکترومغناطیس، از معادلات این نظریه شکلی ازمعادلهٔ موج را به دست آورد و بنابراین نشان داد که میدانهای الکتریکی و مغناطیسی هم میتوانند رفتاری موجگونه داشته باشند. سرعت انتشار امواج الکترومغناطیسی از معادلات ماکسول درست برابر با سرعت نور به دست میآمد، و ماکسول نتیجه گرفت که نور هم باید نوعی موج الکترومغناطیسی باشد.
طیف الکترومغناطیسی
طبق معادلات ماکسول، میدان الکتریکی متغیر با زمان باعث ایجاد میدان مغناطیسی میشود و برعکس؛ بنابراین اگر یک میدان الکتریکی متغیر میدان مغناطیسی بسازد، میدان مغناطیسی نیز میدان الکتریکی متغیر میسازد و اینگونه موج الکترومغناطیسی ساخته میشود و پیش میرود.
نظریهٔ کوانتومی برهمکنش بین تابش الکترومغناطیسی و ماده را نظریهٔ الکترودینامیک کوانتومی توصیف میکند.
پاورپوینت کامل و جامع با عنوان القای الکترومغناطیسی در 38 اسلاید
پدیدهٔ القای الکترومغناطیسی (به انگلیسی: Electromagnetic induction) عبارتست از تولید نیروی محرکه الکتریکی در یک رسانا که در یکمیدان مغناطیسی متغیر با زمان قرار دارد. تغییر میدان مغناطیسی میتواند در اثر یک جریان متناوب یا حرکت سرعتی رسانا و میدان باشد.
نیروی محرکه الکتریکی تولیدشده در نارسانا (مانند یک سیمپیچ) در صورت باز بودن مدار، منجر به برقراری جریان الکتریکی میشود. جریان تولید شده را جریان القایی مینامند.
در سال ۱۸۳۱ میلادی مایکل فارادی و جوزف هانری طی آزمایشهایی دریافتند با دور و نزدیک کردن یک آهنربا به یک سیمپیچ، عقربهٔ مغناطیسیآمپرسنج سری با پیچه تکان میخورد و مقداری ناچیز را نشان میدهد؛ به عبارت دیگر با تغییر میدان مغناطیسی در سیم پیچ، جریان الکتریکی به وجود میآید.
همچنین با تغییر سطح پیچه یا تغییر زاویه بین پیچه و راستای میدان معناطیسی نیز میتوان القای الکترومغناطیسی را مشاهده کرد.
پاورپوینت کامل و جامع با عنوان القای الکترومغناطیسی در 38 اسلاید
پدیدهٔ القای الکترومغناطیسی (به انگلیسی: Electromagnetic induction) عبارتست از تولید نیروی محرکه الکتریکی در یک رسانا که در یکمیدان مغناطیسی متغیر با زمان قرار دارد. تغییر میدان مغناطیسی میتواند در اثر یک جریان متناوب یا حرکت سرعتی رسانا و میدان باشد.
نیروی محرکه الکتریکی تولیدشده در نارسانا (مانند یک سیمپیچ) در صورت باز بودن مدار، منجر به برقراری جریان الکتریکی میشود. جریان تولید شده را جریان القایی مینامند.
در سال ۱۸۳۱ میلادی مایکل فارادی و جوزف هانری طی آزمایشهایی دریافتند با دور و نزدیک کردن یک آهنربا به یک سیمپیچ، عقربهٔ مغناطیسیآمپرسنج سری با پیچه تکان میخورد و مقداری ناچیز را نشان میدهد؛ به عبارت دیگر با تغییر میدان مغناطیسی در سیم پیچ، جریان الکتریکی به وجود میآید.
همچنین با تغییر سطح پیچه یا تغییر زاویه بین پیچه و راستای میدان معناطیسی نیز میتوان القای الکترومغناطیسی را مشاهده کرد.
پاورپوینت کامل و جامع با عنوان انتشار امواج الکترومغناطيسی در 59 اسلاید
تابش الکترومغناطیسی، بر اساس تئوری موجی، پدیدهای موجی شکل است که در فضا انتشار مییابد و از میدانهای الکتریکیو مغناطیسی ساخته شدهاست. این میدانها در حال انتشار بر یکدیگر و بر جهت پیشروی موج عمود هستند.
گاهی به تابش الکترومغناطیسی نور میگویند، ولی باید توجه کرد که نور مرئی فقط بخشی از گسترهٔ امواج الکترومغناطیسی است. امواج الکترومغناطیسی بر حسب بسامدشان به نامهای گوناگونی خوانده میشوند: امواج رادیویی، ریزموج، فروسرخ (مادون قرمز)، نور مرئی، فرابنفش، پرتو ایکس و پرتو گاما. این نامها به ترتیب افزایش بسامد مرتب شدهاند. تغییر در اندازه و موقعیّت بار الکتریکی تواماً باعث انتشار موج الکترو مغناطیسی می شود. رابطهء دامنهء موج الکتریکی (E)دامنهء موج مغناطسیس(B)به صورتE=CBاست که درآن Cسرعت نور در خلاء۳×۱۰^۸ است.
امواج الکترومغناطیسی را نخستین بار ماکسول پیشبینی کرد و سپس هاینریش هرتز آن را با آزمایش به اثبات رساند. ماکسول پس از تکمیل نظریهٔ الکترومغناطیس، از معادلات این نظریه شکلی ازمعادلهٔ موج را به دست آورد و بنابراین نشان داد که میدانهای الکتریکی و مغناطیسی هم میتوانند رفتاری موجگونه داشته باشند. سرعت انتشار امواج الکترومغناطیسی از معادلات ماکسول درست برابر با سرعت نور به دست میآمد، و ماکسول نتیجه گرفت که نور هم باید نوعی موج الکترومغناطیسی باشد.
طیف الکترومغناطیسی
طبق معادلات ماکسول، میدان الکتریکی متغیر با زمان باعث ایجاد میدان مغناطیسی میشود و برعکس؛ بنابراین اگر یک میدان الکتریکی متغیر میدان مغناطیسی بسازد، میدان مغناطیسی نیز میدان الکتریکی متغیر میسازد و اینگونه موج الکترومغناطیسی ساخته میشود و پیش میرود.
نظریهٔ کوانتومی برهمکنش بین تابش الکترومغناطیسی و ماده را نظریهٔ الکترودینامیک کوانتومی توصیف میکند.
پاورپوینت کامل و جامع با عنوان گسیل تابش در الکترومغناطیس در 23 اسلاید
تابش الکترومغناطیسی، بر اساس تئوری موجی، پدیدهای موجی شکل است که در فضا انتشار مییابد و از میدانهای الکتریکیو مغناطیسی ساخته شدهاست. این میدانها در حال انتشار بر یکدیگر و بر جهت پیشروی موج عمود هستند.
گاهی به تابش الکترومغناطیسی نور میگویند، ولی باید توجه کرد که نور مرئی فقط بخشی از گسترهٔ امواج الکترومغناطیسی است. امواج الکترومغناطیسی بر حسب بسامدشان به نامهای گوناگونی خوانده میشوند: امواج رادیویی، ریزموج، فروسرخ (مادون قرمز)، نور مرئی، فرابنفش، پرتو ایکس و پرتو گاما. این نامها به ترتیب افزایش بسامد مرتب شدهاند. تغییر در اندازه و موقعیّت بار الکتریکی تواماً باعث انتشار موج الکترو مغناطیسی می شود. رابطهء دامنهء موج الکتریکی (E)دامنهء موج مغناطسیس(B)به صورتE=CBاست که درآن Cسرعت نور در خلاء۳×۱۰^۸ است.
امواج الکترومغناطیسی را نخستین بار ماکسول پیشبینی کرد و سپس هاینریش هرتز آن را با آزمایش به اثبات رساند. ماکسول پس از تکمیل نظریهٔ الکترومغناطیس، از معادلات این نظریه شکلی ازمعادلهٔ موج را به دست آورد و بنابراین نشان داد که میدانهای الکتریکی و مغناطیسی هم میتوانند رفتاری موجگونه داشته باشند. سرعت انتشار امواج الکترومغناطیسی از معادلات ماکسول درست برابر با سرعت نور به دست میآمد، و ماکسول نتیجه گرفت که نور هم باید نوعی موج الکترومغناطیسی باشد.
طیف الکترومغناطیسی
طبق معادلات ماکسول، میدان الکتریکی متغیر با زمان باعث ایجاد میدان مغناطیسی میشود و برعکس؛ بنابراین اگر یک میدان الکتریکی متغیر میدان مغناطیسی بسازد، میدان مغناطیسی نیز میدان الکتریکی متغیر میسازد و اینگونه موج الکترومغناطیسی ساخته میشود و پیش میرود.
نظریهٔ کوانتومی برهمکنش بین تابش الکترومغناطیسی و ماده را نظریهٔ الکترودینامیک کوانتومی توصیف میکند.
پاورپوینت کامل و جامع با عنوان انرژی مغناطیسی در 31 اسلاید
هرگاه یک منبع ولتاژی را که قادر به ایجاد ولتاژی به اندازه V است، به مداری متصل کنیم، در این مدار جریان الکتریکی برقرار میشود، اما هر ماده دارای یکمقاومت الکتریکی میباشد، بنابراین مجموع ولتاژ چشمه و نیروی محرکه القایی در مدار با حاصلضرب مقاومت مدار در جریانی که از آن میگذرد، برابر خواهد بود و چون جریان را به صورت مشتق زمانی بار الکتریکی تعریف میکنند، بنابراین میتوان گفت که چشمه ولتاژ یا باتری مقداری کار انجام میدهد تا مقداری بار الکتریکی را در مدار انتقال دهد.
مقداری از این کار انجام شده توسط منبع ولتاژ یا انرژی تزریق شده به مدار و مقداری هم به صورت گرما تلف میشود. این انرژی برگشت ناپذیر است. مقدار دیگری از انرژی نیز صرف تغییر شار در مدار میشود، یعنی این جمله دوم کاری است که علیه نیروی محرکه القا شده در مدار انجام میشود. بنابراین اگر در یک مدار صلب و ساکن که بجز اتلاف گرمای ژول هیچ انرژی دیگری از دست نمیدهد، کار انجام شده توسط باتری با تغییر انرژی مغناطیسی مدار برابر خواهد بود.
انرژی مغناطیسی مدارهای جفت شده
در بحث الکتریسیته به مجموع چند مقاومت و خازن یا قطعات دیگر الکترونیکی که به یک منبع ولتاژ وصل شده باشد، مدار الکتریکی میگویند. در بحث مغناطیس به مجموعه سیم پیچی که بر اطراف حلقهای از یک ماده مغناطیسی پیچیده شده باشد، مدار مغناطیسی میگویند.
حال فرض کنید که دستگاهی متشکل از تعدادی مدار که با یکدیگر برهمکنش دارند، داشته باشیم. برای اینکه بتوانیم انرژی مغناطیسی این دستگاه را بیان کنیم، فرض میکنیم در حالت اول کلیه این مدارها بدون جریان هستند و ما تمام جریانها را بطور هماهنگ به مقدار نهاییشان میرسانیم، یعنی در هر لحظه از زمان تمام جریانها کسر یکسانی از مقدار نهایی خود را دارند. البته این امر تنها زمانی درست است که مدارها صلب بوده و محیطهای موجود خطی باشند، تا انرژی نهایی به ترتیب تغییر جریانها بستگی نداشته باشد.
بنابراین اگر جریان هر مدار را با I_i و شار مغناطیسی القا شده در آن را با Ф_i نشان دهیم، به رابطه زیر خواهیم رسید:
که n تعداد مدارها میباشد. البته این رابطه را میتوان برحسب القا متقابل مدارها نوشت.
چگالی انرژی در میدان مغناطیسی
رابطهای که در قسمت قبلی برای انرژی مغناطیسی مدار محاسبه شد، رابطه مفید است، چون پارامترهای موجود در آن را میتوان با اندازه گیری مستقیم بدست آورد. از طرف دیگر ، میتوان انرژی را برحسب میدانهای برداری مغناطیسی و بردار شدت میدان مغناطیسی بیان کرد. در این صورت چون رابطه گویاتر است و تصویری را عرضه میکند که در آن انرژی در خود میدان مغناطیسی ذخیره شده است، لذا این بیان مفیدتر است.
این رابطه نسبت به رابطه قبلی کلیتر میباشد و اگر محیط مورد نظر ما یک محیط خطی باشد، یعنی بتوانیم با داشتن یکی از مقادیر شدت میدان مغناطیسی (H) یا القا مغناطیسی (B) یکی را برحسب دیگری محاسبه کنیم، به راحتی میتوانیم مقدار انرژی ذخیره شده در آن مدار را با استفاده از حل یک انتگرال ساده از رابطه زیر محاسبه کنیم:
که در آن ضرب موجود از نوع ضرب عددی یا اسکالر است و انتگرال روی حجم مدار انجام میگیرد.
چگالی انرژی مغناطیسی
تابع انتگرال (یا سیگما) که در رابطه مربوط به انرژی مغناطیسی ظاهر میگردد، یک انتگرال حجمی است که روی تمام نقاط فضا گرفته میشود و لذا بدیهی است که میتوانیم انرژی واحد حجم را به عنوان چگالی انرژی مغناطیسی تعریف کنیم، یعنی اگر چگالی انرژی را با μ نشان دهیم، در این صورت خواهد بود.
در مورد خاص اجسام مغناطیسی همسانگر و خطی که بین H و B یک رابطه خطی وجود دارد، یعنی است که در آن μ تراوایی مغناطیسی ماده میباشد، لذا رابطه چگالی انرژی به فرم ساده زیر در میآید:
پاورپوینت کامل و جامع با عنوان معادلات ماکسول در 50 اسلاید
معادلات ماکسوِل، معادلههای دیفرانسیل با مشتقات جزئی هستند که بههمراه قانون نیروی لورنتس، مبانی الکترومغناطیس کلاسیک، اپتیک کلاسیک، و مدارهای الکتریکی را تشکیل میدهند. این معادلات، مدل ریاضی فناوریهای الکتریکی، اپتیکی، و رادیویی مانند تولید توان الکتریکی،موتورهای الکتریکی، مخابرات بیسیم، رادار، عدسیها، و ... را ارائه میکنند. معادلات ماکسول، چگونگی تولیدشدن میدانهای الکتریکی ومغناطیسی را توسط بارها و جریانهای الکتریکی، و نیز تولیدشدن یکی از این میدانها با تغییر میدان دیگر را توصیف میکنند.
این معادلهها اولین بار توسط فیزیکدان اسکاتلندی جیمز کلارک ماکسول فرمولبندی شدهاند. انواع فرمولبندی برای این معادلهها میتوان ارائه داد. خود ماکسول این معادلات را در قالب هشت معادله ارائه کردهبود، ولی مشهورترین فرمولبندی را اُلیوِر هِویساید (Heaviside) ارائه کرد که دو فرمدیفرانسیلی و انتگرالی دارد.
معادلات ماکسول به افتخار فیزیکدان و ریاضیدان اسکاتلندی جیمز کلارک ماکسوِل نامگذاری شده است، زیرا در شکل اولیه، آنها همگی در مقاله ای چهار بخشی از سوی او در میان سالهای 1861 و 1862 منتشر شدهاست . فرم ریاضی قانون نیروی لورنتس نیز در این مقاله ظاهر شد . این معادلات انتشار امواج در خلاء با یک سرعت ثابت را توصیف میکنند. ماکسول همچنین نشان داد که این سرعت هم اندازه سرعت نور است و به درستی حدس زد که نور مانند امواج رادیویی و اشعه X، گونه ای از تابش الکترومغناطیسی و در محدوده طول موج های خاص است. معادلات ماکسول توصیف میکنند که میدانهای الکتریکی و مغناطیسی چگونه تولید میشوند و با بار و جریان در تغییر هستند. نوشتن معادلات ماکسول به اشکال دیگر که هنوز هم "معادلات ماکسول" نامیده میشوند اغلب مفید است. در مکانیک کوانتوم، نسخه ای که بر اساس پتانسیلهای الکتریکی و مغناطیسی هستند ترجیح داده میشود. از آنجا که معادلات ماکسول دلالت بر سرعت ثابت نور دارند، آنها مدتها معتقد بودند که فقط برای یک ناظر ساکن با توجه به فرض "اِتِر" معتبرند. اینشتین، در تئوری نسبیت خاص خود نظریهای به جای معادلات ماکسول داد که برای ناظر دلخواه (ساکن و متحرک) معتبر بود ، و نشان داد که این مفاهیم از نظر فیزیکی مستقل از فضا و زمان ناظر است. با این حال، از اواسط قرن 20 مشخص شده بود که معادلات ماکسول قوانین دقیق جهانی نیستند اما تقریب دقیق تر از نظریه اساسی الکترودینامیک کوانتومی هستند.
پاورپوینت کامل و جامع با عنوان تابش زمینه کیهانی و تابش هاوکینگ در 40 اسلاید
در کیهانشناسی تابش زمینهٔ کیهانی (به انگلیسی: Cosmic Microwave Background radiation یا به اختصار CMB) تابشی الکترومغناطیسی است که سراسر کیهان را پوشاندهاست. این تابش، طیف جسم سیاهی با دمای ۲٫۷۲۶ کلوین دارد. بنابراین بیشینهٔ این تابش در محدودهٔ ریزموج با بسامد ۱۶۰GHz و طول موج ۱٫۹mm است. کیهانشناسان تابش زمینهٔ کیهانی را بهترین شاهد برای نظریهٔ مهبانگ میدانند.
تابش هاوکینگ (به انگلیسی: Hawking radiation) تابش جسم سیاه است که پیشبینی میشود به خاطر تأثیر کوانتومی در نزدیکی افق رویداد، از سیاهچاله تابیده شده باشد. این پدیده به نام استیون هاوکینگ نامگذاری شدهاست. زیرا نخستینبار او در سال ۱۹۷۴ (میلادی) بحث نظری وجود آن را مطرح کرد. کارهای هاوکینگ به توضیح نتایج یاکوب بکنشتاین کمک کرد. یاکوب بکنشتاین پیشبینی کرده بود که بیشینه آنتروپی سیاهچاله اندازه مشخصی دارد.
فهرست مطالب:
تعریف تابش زمینه کیهانی
پیشینه تابش زمینه کیهانی
جرج گاموف
آرنو پنزیاس
ماهواره های پرتاب شده برای اندازه گیری
گاه شمار تابش زمینه کیهانی
اشخاص مهم و تاریخ ها
ویژگی های تابش زمینه کیهانی
عوامل موثر در ناهمسان گردی تابش زمینه کیهانی
فرمول بندی ریاضی ناهمسانگردی
طیف توانی ناهمسانگردی تابش زمینه کیهانی برحسب جدایی زاویه ای
ارتباط تابش زمینه کیهانی با نظریه مهبانگ
سرعت زمین نسبت به ناهمسانگردی
آزمایش ها و رصد تابش زمینه کیهانی
تعریف تابش هاوکینگ
اثرات تابش هاوکینگ
نگاه کلی به تابش هاوکینگ
بینش فیزیکی تابش هاوکینگ
تفاوت مهم بین تابش سیاه چاله محاسبه شده توسط هاوکینگ و تابش گرمایی تابیده شده از جسم سیاه
پاورپوینت کامل و جامع با عنوان بررسی کهکشان آندرومدا (زن بر زنجیر) در 23 اسلاید
کهکشان آندرومِدا (به انگلیسی: Andromeda Galaxy)، امرأه المسلسله یا کهکشان زنِ برزنجیر یک کهکشان مارپیچی واقع در صورت فلکیِ آندرومدا است که حدود ۲٫۵ میلیون سال نوری از کهکشان راه شیری فاصله دارد. بااینکه آندرومدا نزدیکترین کهکشان مارپیچی به کهکشان راه شیری است، ولی نزدیکترین کهکشان نیست. آندرومدا بزرگترین کهکشان از گروه کهکشانیِ محلی است که شامل راه شیری، آندرومدا، سهتکه و ۳۰ کهکشان کوچکتر است.
احتمال دارد که کهکشانهای راه شیری و آندرومدا حدود ۳ تا ۵ میلیارد سال آینده با یکدیگر برخورد کنند.
گفته میشود که «آندرومدا» احتمالاً بزرگترین کهکشان در گروه محلی خود است.
پاورپوینت کامل و جامع با عنوان بررسی اختروش، کرم چاله و سحابی در 31 اسلاید
اختروَش یا کوِیزار یا کوازار (به انگلیسی: Quasar)، یک هستهٔ فعال به شدت نورانی و دوردست است که وابسته به یک کهکشان جوان است. آنها در ردهٔ یک کلاس از اشیا به نام هسته کهکشانی فعال قرار دارند.
کِرمچاله در فیزیک یک پل میانبر فرضی در فضازمان است.
(کرمچالهها) ساختار و بُعد فضا و زمان را شکسته و باعث ایجاد تونلی و حفرهای میشوند که سرعت یک ماده در آن از سرعت نور بیشتر خواهد شد. همچنین کرمچالهها بُعد و ساختار فضا را نیز شکافته و آن را جمع میکنند که این باعث کوتاه شدن مسافت بین دو نقطه در فضا میگردد.
به ابر عظیمی از غبار، گاز و پلاسما در فضاهای میانستارهای، سَحابی یا میغواره گفته میشود. سحابیها محل تولد ستارهها هستند.
آموزش ساخت سلول خورشیدی در خانه با کم ترین هزینه (pdf)
عنوان فایل : آموزش ساخت سلول خورشیدی در خانه با کم ترین هزینه
نوع فایل : pdf
شرح مختصر :
سلول خورشیدی یک قطعه الکترونیکی حالت جامد است که انرژی نور خورشید را مستقیما توسط اثر فوتوولتاییک به الکتریسیته تبدیل می کند. سلول خورشیدی ساخته شده از ویفر سیلیکون، کاربرد بسیاری دارند. سلولهای تکی برای فراهم کردن توان لازم دستگاههای کوچکتر مانند ماشین حساب الکترونیکی به کار میروند. آرایههای فوتوولتاییک الکتریسیتهٔ بازیافتشدنیای را تولید میکنند که عمدتاً در موارد عدم وجود سیستم انتقال و توزیع الکتریکی کاربرد دارد. برای مثال میتوان به محلهای دور از دسترس، ماهوارههای مدارگرد، کاوشگرهای فضایی و ساختمانهای مخابراتی دور از دسترس اشاره کرد. علاوه بر این استفاده از این نوع انرژی امروزه در محلهایی که شبکهٔ توزیع هم موجود است، مرسوم شدهاست. امروزه انسان با پیشرفتهایی که در زمینههای مختلف کرده، نیازی روز افزون به انرژی پیدا کرده و این امر او را بر آن داشت تا با روشهای گوناگون انرژی مورد نیاز خود را کسب کند. در این کتاب روش ساخت یک سلول خورشیدی کوچک در منزل با استفاده از یک ورق مس و تعدادی لوازم اندک توضیح داده شده است.
تعداد صفحه : 6 انواع میکروسکوپ :۱- الکترونی ۲- نوری اجزامیکروسکوپ نوری :۱-اجزانوری ۲-اجزا مکانیکی ۱- بخش نوری :منبع نور-جمع کننده -عدسیها منبع نور : به طور معمول لامپ کوچک است که اغلب زیر پایه میکروسکوپ قراردارد و پرتو ها را به دیا فراگم میتا باند ونیز گاهی ممکن است ائینه یا چراغ رومیزی باشد. جمع کننده :مجمو عه ای از عدسی های محدب است که پرتو های نور را همگرا میکند وبه جسم میتاباند تا نور کافی برای مشاهده ی حسم تا مین گردد . عدسیها :شامل تعدادی عدسی است که اولین عدسی که به جسم نز دیک است را عدسی چشمی ودومین عدسی را هلا لی گویند . در واقع عمل کلی انها تهیه تصویراز جسم است این تصویر بزرگتر از جسم معکوس وحقیقی است. ۲-بخش مکانیکی :یعنی قسمتهای که در عبور وتشکیل تصویر نقش اصلی ندارند مانند :پایه-دسته -صفحه ی پلاتین-شاریو -صفحه ی گردان-پیچها ی تنظیم -دیا فراگم -گیره -لوله ی میکروسکوپ پایه:معمولا از جنس فولاد سنگین است تا هنگام مطالعه ی میکروسکوپی وعکس برداری ان دچار لغزش نگردد. دسته:برای جا به جایی میکروسکوپ به کار میرود . پیچهای تنظیم :شامل پیچ سریع یا ماکرومتر وپیج میزان دقیق یا میکرومتر .دربعضی میکروسکوپها روی همدیگر قرار دارند ودر بعضی دیگر از یکدیگر جدایند این پیچها معمولا صفحه ی پلاتین را به سمت بالا وپایین جا به جا می کنند. صفحه ی پلاتین:صفحه ای است فلزی که جسم مورد نظر روی ان قرار می گیرد از سوراخ وسط صفحه نور عبور کرده وبه نمونه برخورد میکند. در میکروسکوپهای جدید برای سهولت جا به جا یی جسم یا جا به جایی پلاتین وجسم با هم روی ان سیستمی به نام شاریو گذاشته شده است .شاریو دارای دو بخش تیغه ای برای نگهداری نمونه ونیز پیچهایی زیر پلاتین دارد برای چپ وراست وجلو وعقب کردن نمونه.
مدل سازی و شبیه سازی سیستم های چند جزئی به کار انداخته شده هیدرولیک توسط گراف های باند
دانلود مقاله مدل سازی و شبیه سازی سیستم های چند جزئی به کار انداخته شده هیدرولیک توسط گراف های باند
(متن ترجمه به فارسی)
این فایل در قالب Word قابل ویرایش، آماده پرینت و ارائه به عنوان پروژه پایانی می باشد
قالب: Word
تعداد صفحات: 12
توضیحات:
این مقاله مربوط به مدل سازی و شبیه سازی سیستم های چند جزئی شامل اجزای به کار انداخته شده ی خشن و انعطاف پذیر توسط موتورهای هیدرولیک می باشد. به منظور بسط تکنیک، مدل گراف باند اجزاء سیستمایتک استفاده شده است. عملیات فرض شده طی مثالی از جرثقیل گردان تشریح و این مدل شبیه سازی شده بسط داده شد و نتایج شبیه سازی شده ی آن با استفاده از برنامه ی باند سیم مورد استفاده قرار گرفت. مدل بسط داده شده بر اساس فلسفه ی مدل سازی فیزیکی توسط جزء به جزء کردن آن به شکل سیستماتیک و استفاده از مدل های برنامه ی کتابخانه ای بیان شد. مدل ریاضی از سیستم ماشینی خواهد بود که به شکل روابط دیفرانسیل جبری شکل می گیرد (DAE ها) و با استفاده از یک تحلیلگر توانا حل شده است. حل کردن چنین مدل هایی با استفاده از شاخص شبه ضمنی هر دو مدل صورت می گیرد.
این فایل در قالب Word قابل ویرایش، آماده پرینت و ارائه به عنوان پروژه پایانی می باشد
قالب: Word
تعداد صفحات: 116
توضیحات:
از حدود 70 سال قبل توربين هاي گازي جهت توليد برق مورد استفاده قرار مي گرفته اند، اما در بيست سال اخير توليد اين نوع توربين ها بيست برابر افزايش يافته است. اولين طرح توربين گازيمشابه توربين هاي گازي امروزي در سال 1791 به وسيله «جان پاير» پايه گذاري شد كه پس از مطالعات زيادي بالاخره در اوايل قرن بيستم اولين توربين گازي كه از يك توربين چند طبقه عكس العملي و يك كمپرسور محوري چندطبقه تشكيل شده بود، توليد گرديد. اولين دستگاه توربين گازي در سال 1933 در يك كارخانه فولادريزي در كشور آلمان مورد بهره برداري قرار گرفت و آخرين توربين گازي با قدرت 2/212 مگاوات در فرانسه نصب و مورد بهره برداري مي گردد. در صنعت برق ايران اولين توربين گازي در سال 1343 در نيروگاه شهر فيروزه (طرشت) مورد استفاده قرار گرفته است كه شامل دو دستگاه بوده و هر كدام 5/12 مگاوات قدرت داشته است. در حال حاضر كوچكترين توربين گازي موجود در ايران توربين گاز سيار «كاتلزبرگ» با قدرت اسمي يك مگاوات و بزرگترين آن توربين گازي 49-7 شركت زيمنس با قدرت 150 مگاوات مي باشد.
سرفصل:
تاريخچه توربين گاز
نقش توربين گاز در صنعت برق
مزاياي توربين گازي
معايب توربين گازي
تئوري فرايندهاي توربين گازي در افزايش قدرت و راندمان
ويژگي هاي نصب نازلها قبل از فيلتر
کولر تبخیری
واحد تبخيركننده
اجزاء و نحوه عملكرد چيلرهاي انژكتوري
محاسبات مربوط به ابركولر و افت فشارهاي ايجاد شده مسير هوا
این فایل در قالب Word قابل ویرایش، آماده پرینت و ارائه به عنوان پروژه پایانی می باشد
قالب:Word
تعداد صفحات: 20
توضیحات:
پراکندگی الاستیک
منبع اصلی کنتراست در تصاویر TEM الکترونهای پراکنده شده به صورت الاستیک میباشد. آنها همچنین شدت زیادی در DPS ایجاد میکنند، بنابراین نیاز داریم که بفهمیم چگونه این فرایند را کنترل کنیم. ابتدا پراکندگی الاستیک از یک اتم منفرد و سپس از تعداد زیادی اتم در نمونه بررسی خواهیم کرد. به منظور فهم پراکندگی الاستیک میبایست هر دو خاصیت موجی و ذرهای الکترون را با هم در نظر بگیریم.
در مقابل پراکندگی رادرفورد، الکترونها که به صورت الاستیکی با زاویه کوچک پراکنده میشوند، همدوس میباشند. شدت این پراکندگی زاویه کوچک تحت تأثیر قرارگیری (آرایش) اتمها در نمونه است.
1-3- ذرات و امواج
دو روش متفاوت برای چگونگی برهمکنش پرتو الکترونی با نمونه TEM وجود دارد. میتوانیم پرتو الکترونی را به صورت ذرات یا به صورت امواج بررسی کنیم. الکترونها ذراتی هستند که دنبال میکنند خصوصیتی که در فصل دو معرفی کردیم.
الکترون یک سطح مقطع پراکندگی و یک سطح مقطع دیفرانسیلی دارد.
الکترونها برهمکنش میکنند با هستی و ابر الکترونی
میتوانیم این فرایند پراکندگی را به ذرات دیگر مثل زمان ذرات α نسبت دهیم.
وقتی درباره ی طیف سنجی الکترون و پرتو بحث میکنیم، میبایست از توصیف ذره ای استفاده کنیم.
این فایل در قالب Word قابل ویرایش، آماده پرینت و ارائه به عنوان پروژه پایانی می باشد
قالب:Word
تعداد صفحات: 36
توضیحات:
پراکندگی و پراش
الکترون یک ذره ی سبک و دارای بار منفی است. بنابراین به آسانی هنگام نزدیک شدن به الکترونها دیگر یا هسته ی اتم منحرف میشود. این برهم کنشهای کولنی (الکترواستاتیک) باعث پراکندگی الکترون است، که سبب میشود فرآیند TEM امکانپذیر شود. همچنین در مورد ماهیت موجی الکترون که باعث اثر پراش میشود، بحث خواهیم کرد. چیزی که در حال حاضر میتوان گفت این است که اگر الکترونها پراکنده نمیشدند، هیچ مکانیزم بمی برای ایجاد تصاویر TEM، DPS و منبع اطلاعات طیف سنجی وجود نداشت. بنابراین ضروری است که برای تعبیر اطلاعات TEM هر دو روش ذره ای و موجی پراکندگی الکترون را درک کنیم. پراکندگی الکترون از مواد، فیزیک پیچیدهای دارد اما لازم نیست کسی که با میکروسکوپ کار میکند جزئیات دقیقی را از تئوری آن بداند. ابتدا با تعریف چند اصطلاح که در سراسر کتاب آمده است، شروع میکنیم و سپس چند ایده ی اساسی که باید درک شود، معرفی میکنیم.
این ایدههای اساسی میتواند در پاسخ به چهار پرسش خلاصه شوند.
الکترون زمانی که از نزدیک یک اتم عبور میکند، احتمال اینکه پراکنده شود چقدر است؟
فاصله میانگین یک الکترون بین پراکندگی ها چه قدر است؟
اگر الکترونها پراکنده شوند، تحت چه زاویهای منحرف میشوند؟
آیا پراکندگی باعث از دست رفتن انرژی الکترون میشود یا نه؟
پاسخ به سؤال اول مربوط به احتمال پراکندگی در ایده ی سطح مقطع گنجانده شده است. زاویه پراکندهای (معمولاً از طریق سطح مقطع دیفرانسیلی تعیین میشود) نیز مهم است؛ زیرا به شما اجازه کنترل الکترونها در تصویر و آنچه از اطلاعات در تصویر موجود است، را میدهد. درباره این موضوع، زمانی که درباره کنتراست تصویر در قسمت 3 کتاب صحبت میکنیم، بیشتر بحث میکنیم. سؤال سوم به تعریف مسافت آزاد میانگین نیاز داریم، مفهوم مهمی است که برای نمونههای نازک استفاده میکنیم.
این فایل در قالب Word قابل ویرایش، آماده پرینت و ارائه به عنوان پروژه پایانی می باشد
قالب:Word
تعداد صفحات: 17
توضیحات:
مقدمه
مدل آيزينگ ساده ترين و مشهورترين مدل سيستم اسپيني مكانيك آماري است. اين مدل مي تواند به خوبي پديده هاي گوناگوني از جمله مواد مغناطيسي و همزيستي گاز- مايع و آلياژهاي دو فلزي را توصيف كند. اين مدل از جمله مدل هايي است كه براي مطالعه گذار فازهاي يك سيستم به كار برده مي شود. اين مدل اولين بار توسط لنز و آيزينگ درسال 1925 به عنوان يك مدل فرومغناطيسي ارائه شد آيزينگ در پايان نامه دكترايش نشان داد كه اين مدل در يك بعد، هيچ گونه گذار فازي از خود نشان نمي دهد. با انجام اولين محاسبات انرژي آزاد ميدان صفر توسط انزاگر در سال 1944 و محاسبه مغناطیس همزمان توسط يانگ در سال 1952، ويژگي گذار فاز مرتبه دوم اين مدل در دو بعد اثبات شد. حل مدل آيزينگ در يك بعد و دو بعد (درغياب ميدان خارجي) مي تواند براي تعيين نماهاي بحراني سيستم هايي كه در اين دو رده جهان شمولي قرار مي گيرند، استفاده شود به طوري كه نماهاي بحراني مدل آيزينگ دو بعدي با برهمكنش همسايه هاي اول مطابق با فرضيه جهان شمولي با نماي بحراني حل دقيق مدل آيزينگ شبكه مربعي يكسان است.
حل مدل آیزینگ یک بعدی بدون میدان مغناطیسی با استفاده از تغییر متغیر
مقاله عرضه رهیافتی جدید براي تعیین مولفه هاي انحراف قائم با استفاده از تصویربرداري سمت الرأسی از ستارگان
دانلود مقاله عرضه رهیافتی جدید براي تعیین مولفه هاي انحراف قائم با استفاده از تصویربرداري سمت الرأسی از ستارگان
این فایل در قالب Word قابل ویرایش، آماده پرینت و ارائه به عنوان پروژه پایانی می باشد
قالب:Word
تعداد صفحات: 33
توضیحات:
عرضه رهیافتی جدید برای تعیین مؤلفههای انحراف قائم با استفاده از تصویربرداری سمتالرأسی از ستارگان
چکیده
شبکههای انحراف قائم در محاسبات ژئودزی فیزیکی و محاسبه ژئوئید بسیار پراهمیت هستند. یکی از روشهای تعیین مؤلفههای انحراف قائم () مقایسه مختصات نجومی و ژئودتیک است. در قرن اخیر با پیشرفتهای صورت گرفته قادر به تعیین مختصات ژئودتیک با استفاده از مشاهدات GPS با دقت بسیار زیاد هستیم. همچنین با بهکارگیری روشهای الکترواپتیکی نجوم ژئودتیک، تغییرات اساسی در روشهای کلاسیک نجوم ژئودتیک در تعیین مختصات نجومی به وقوع پیوسته است.
هدف از این مقاله عرضه یک روش خودکار و دقیق برای تعیین مختصات نجومی و در نهایت مؤلفههای انحراف قائم است. امروزه با در اختیار قرار گرفتن دوربینهای رقمی با دقت هندسی و تابشسنجی زیاد، فصل جدیدی در بهکارگیری نجوم ژئودتیک در کاربردهای گوناگونی نظیر تعیین وضعیت ماهواره، مختصات نجومی و مؤلفههای انحراف قائم، با عنوان نجوم ژئودتیک بینایی مبنا گشوده شده است. چنانچه از ستارگان در راستای سمتالرأس (زنیت) تصویربرداری شود، میتوان مختصات نجومی محل را با دقتی بهتر از 01/0 ثانیه تعیین کرد. با تعیین مختصات نجومی و مشاهده مختصات ژئودتیک میتوان مؤلفههای انحراف قائم را تعیین کرد.
در این مقاله پس از تشریح اصول روش پیشنهادی، آن را روی تصویر اخذشده از یک ایستگاه آزمایش میکنیم. نتایج حاصل دستیابی به مؤلفههای انحراف قائم با دقت بسیار زیاد را نشان میدهد.
دانلود مقاله تحلیل عددی انتقال حرارت به طریق تشعشع
(متن ترجمه به فارسی)
این فایل در قالب Word قابل ویرایش، آماده پرینت و ارائه به عنوان پروژه پایانی می باشد
قالب: Word
تعداد صفحات: 21
توضیحات:
در فضاهایی که دارای مناطقی با دماهای مختلف هستند، مانند داخل کورهها و مغازههای افتراقی که شامل سطوح و گازهای مختلف نشر دهنده و پخشکننده شارهای حرارتی تابشی میباشند، نیاز به مدلی است که انتقال حرارت تابشی را با دقت کافی و هزینه محاسباتی مناسب تقریب زند. مدلهای تشعشعی، شار حرارتی را بین سطوح و گازهای مختلف محاسبه و امکان پیشگویی دقیقه توزیع دما را در نقاط مختلف فراهم میکند. در یک محفظه احتراق سطوح سرد شده با آب مانند لولههای داخل یک دیگ به عنوان چاه حرارت عمل میکنند، در ارتباط با سوخت گاز طبیعی معمولاً تابش گاز غیر درخشان مانند دیاکسید کربن حاکم در این مورد تابش را تشکیل میدهد. اما در احتراق هیدروکربنهای سنگین به ویژه سوختهای که تعداد اتمهای کربن نسبت به اتمهای هیدروژن در مولکول سوخت زیاد است، شعله از نوع درخشان بود و دود تشکیل شده درصد در صد زیادی از انتقال حرارت را به خود اختصاص میدهد و در نتیجه انتقال حرارت تابشی بالاست. در فرایندهای احتراق سوخت فسیلی سبک و هیدروکربونی، دیاکسید کربن و بخار آب مهمترین گازهای تابش کننده هستند.
اموزش حرفه ای و کاملا تکنیکی فیزیک، مبحث دینامیک با جزوه مهندس امیر مسعودی بدون نیاز به مشاهده dvdهای اموزشی بسیار حجیم و زمان برتنها در قالب جزوه ....
برای اولین بار و تنها در این سایت این محصول را به صورت کاملا اورجینال از ما تهیه کنید...
نانو تکنولوژی | مقالات دانشجویی رشته فیزیک (۳۲ص word)
قسمتهایی از مقاله دانشجویی رشته فیزیک با عنوان «نانو تکنولوژی»؛
بعيد نيست كه تحقيقات در حوزه مواد تا سال 2015 متضمن بهبودهايي در خواص بعضي از حوزه هاي اضافي بوده و اثرات چشم گيري در پي داشته باشد...
اين حوزه تحقيقاتي، نانو تكنولوژي را با بسياري از كاربردهاي مواد نانوساختاري تلفيق مي كند. يك حوزه بسيار مهم، تزريق نيمه هادي هاي نقطه كوانتومي است که...
در سال 2015 طول دروازه نيمه هاديها «35 نانومتر» و تعداد كل عمليات در ريزپردازنده هاي توليد انبوه «4/3 ميليارد» خواهد بود و در پردازنده هايي با عملكرد بالا كه با حجم كمتري توليد مي شوند،...
ولي پيش بيني نمي شود كه تا سال 2015 نمود چشمگيري داشته باشند. اين مفاهيم به لحاظ كيفي با آنچه در كامپيوترهاي سنتي به كار مي روند، متفاوت اند...
ابر رساناها | مقاله دانشجویی رشته برق و فیزیک (۱۸ص word)
قسمتهایی از ابر رساناها | مقاله دانشجویی رشته برق و فیزیک ؛
یک توافق تقریبی همچنین دررابطه با اجزای سازنده پایه لازم برای درک ابر رساناهای دمای بالا وجود دارد. آنهارا میتوان بصورت زیر خلاصه کرد:
اگر چه هیچ توافقی بین تئوریسینها بر سر اینکه چگونه یک توضیح نظریهای دارای جزئیات برای curpateها ارائه کنند....
پدیده ابررسانایی در تکنولوژی از تواناییگستردهای بر خوردار است، زیرا بر پایه این پدیدهبارهایالکتریکی میتوانند بدون تلفات گرمایی از یک ماده رسانا عبور کنند. به عنوان مثال...
مشکل موجود در گسترش تکنولوژی ابررسانایی همیشه دماهای پایین مورد نیاز برای نگهداری خاصیت ابررسانایی است به عنوان مثال..
نباید تصور کرد که پدیده ابررسانایی صرفاخاصیتی در جهت بهبود فرایند رسانایی میباشد. این دو فرایند کاملا متفاوت هستند...
الکترونها در حالت عادی یکدیگر را میرانند. درنتیجه برای تشکیل یک زوج الکترون سازو کار ویژهای موردنیاز است...
شامل:مقدمه،توضیحات ،سوالات مطرح شده، داده ها، تصاویر، مربوط به هر قسمت می باشد.
-------------------
قسمتی از ( انواع آینه) :
یک آینه دیگر با سمت گیری بسیار ویژه ، آینهای است که از سطح یک مایع تشکیل مییابد.برای مثال ، از یک تشت پر از جیوه و یک باریکه لیزر برای تعیین امتداد قائم یک محل استفاده میشود و به منزله یک شاقول اپتیکی دقیق مورد استفاده قرار میگیرد.برای همین مقصود ، میتوان حتی از مایعاتی که قدرت بازتابی کمتری دارند ولی سمی نیستند، استفاده کرد.
هستند که یک طرف آنها جیوهاندود شده است. هنگامی که روبروی آینهای میایستید، خودتان را در آینه میبینید، یا اگر تصاویر اطراف آب ، در آب قابل مشاهده است، به این علت است که از سطح آینه یا آب نورها بازتاب پیدا میکنند و به چشم میرسند. آنچه در آینه دیده میشود، تصویر شی مقابل آینه است. آیا تاکنون تصویر درختان یا منظرههای اطراف یک استخر آب را در سطح آب مشاهده کردهاید؟
آزمایش آینه لوید ، از انواع آزمایشهای تداخل است که تداخل آن به روش تقسیم جبهه موج می باشد. در این آزمایش ، نور از یک شکاف با فرود ...
فروشگاه فایل کیا؛
منبع جامع انواع فایل...
چنانچه فایل مد نظرشما در بین فایل های بارگذاری شده در سایت موجود نبود،می توانید از طریق دایرکت پیج اینستاگرام@kiyafile.ir سفارش دهید.